Steady State Modeling of the Minimum Critical Core of TREAT using MAMMOTH

PHYSOR 2016

1Tony Alberti, 1Todd Palmer, 2Javier Ortensi, 2Mark DeHart

May 3rd, 2016

1Oregon State University, Corvallis, OR 97331

2Idaho National Laboratory, Idaho Falls, ID 83402
Outline

• Purpose and Motivation
• Research Objectives
• Modeling Approach
 – Cross Sections, Energy Group Structures, Spectral Analysis
 – Simulation Tool, MAMMOTH
• MAMMOTH Models
 – Diffusion Constant Treatment
 – Homogenizations
• Results
• Future Work
Purpose and Motivation

• Historical methods were iterative and only accurate within ±10%.
 – Long and expensive pre-experiment characterization.

• High fidelity TREAT simulation model will provide:
 – Reduce number of calibration experiments.
 – Predictive capability for TREAT.
 – Preservation of time and money for facility and experimenters.

• Full 3D multiphysics capability
 – Power distribution, thermal fluids, fuels performance.
 – Accurately capture feedback effects and rapid transient behavior in both reactor and experiment test vehicle.
Research Objectives

• Accurately calculate fundamental neutronics properties.
 – Power Distribution.
 – Eigenvalue.
 – Reaction Rates.

• Observe phenomena as a function of temperature.
 – Spectral hardening.
 – Increased neutron leakage and capture.

• Establish appropriate treatment of diffusion coefficients in highly anisotropic regions.

• Provide preliminary base model for transient modeling.
Cross Section Preparation

• Full 3D cross sections developed through SERPENT
 – Monte Carlo reactor physics analysis software developed at VTT in Finland
 – Continuous energy using ENDF/B-VII.r1
 – No energy, spatial, or angular discretization approximations.

• Near void regions (air channels) developed using DRAGON5
 – SERPENT does not calculate accurate cross sections for near void regions

• Flux and volume weighted

\[\Sigma^g_{x,i} = \frac{\int_{D_i} \int_{E_{g-1}}^{E_g} \phi(r,E) \Sigma_x(r,E) dE dV_i}{\int_{D_i} \int_{E_{g-1}}^{E_g} \phi(r,E) dE dV_i} \]
Justification for 3D Cross Sections

• Key neutronics parameters are lost in simplified geometries

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TREAT Fuel</th>
<th>TREAT Assembly</th>
<th>TREAT Full Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ave. Num. of Collisions to Thermal</td>
<td>94.60</td>
<td>96.75</td>
<td>96.89</td>
</tr>
<tr>
<td>Ave. Num. of Collision while Thermal</td>
<td>47.96</td>
<td>62.88</td>
<td>95.79</td>
</tr>
<tr>
<td>Dist. traveled to thermal energy (cm)</td>
<td>48.04</td>
<td>53.72</td>
<td>52.59</td>
</tr>
<tr>
<td>Dist. Traveled while thermal (cm)</td>
<td>48.51</td>
<td>54.70</td>
<td>55.39</td>
</tr>
</tbody>
</table>

Based on SERPENT Minimum Critical model with ENDF/BVII.r1 data

• RMS linear distance of 76cm before being absorbed.
• Active fuel length - 122 cm
• Graphite reflector length - 63 cm

February 23, 2017
Energy Group Structure Analysis

• Tested several group structures on 3D half assembly model
 – Reflective boundary conditions on bottom and sides and vacuum on top
 (extrapolation distance...)
• 26, 14, and 11 group
• 10 equal lethargy bin group
• 8 HTR group
• 11 group best compromise
Spectral Analysis for Axial Cross Sections

Based on SERPENT half assembly model with ENDF/BVII.r1 data
Simulation Tool – MAMMOTH

- **MAMMOTH** – Multiphysics reactor analysis package.
 - Rattlesnake, BISON, RELAP-7
 - Linked with single executable.

- **Steady state neutronics calculations with Rattlesnake**
 - Solves S_N or P_N discretization schemes of the SAAF transport formulation
 - Diffusion scheme
 - Solves eigenvalue or transient problems with arbitrary order of anisotropic scattering
 - Nonlinear diffusion acceleration (NDA)
 - Superhomogenized cross sections.
 - Improved quasi static (IQS) methods.
Diffusion Coefficient Treatment

\[\frac{1}{\sigma_t} \] streaming term of second order SAAF transport formulation leads to numerical instabilities for near void regions \(\rightarrow \) air channels

- In addition, void regions present complications in the calculation of diffusion coefficients for some Monte Carlo solvers, like SERPENT 2.

- Alleviated through:
 - Removal of near-void through homogenized models
 - Artificially increasing the value of the isotropic diffusion coefficient
 - Enforce higher diffusion in the air channel
 - Preserves neutron population in active core

- To improve the solutions, anisotropic diffusion coefficients are necessary
 - Currently testing implementation
Homogenization 1 - Full Radial Hom.

- All radial volumes are homogenized into a single volume.
Homogenization 2 – Full Fuel Hom. w/ Explicit Ch.

- Fuel, clad gap, and clad are homogenized.
 - Air channels and interassembly gap are explicitly modeled.
 - Solved via diffusion only.

Heterogeneous

Full Fuel Hom. w/ Explicit Ch.
Diffusion Treatment - Full Fuel Hom. w/ Explicit Ch.

- Air channels and inter-assembly gap are left explicitly modeled to treat streaming in air channel.

- Artificially adjust group wise diffusion coefficients
 - Attempt to preserve accurate neutron population within active core.
 - Force neutrons out of core, inherently increase reflection back into core and better maintain balance.
Transport solves for Single Assembly

- High order angular discretization is needed to accurately capture the streaming effect.
 - P_{17} involves calculation of $(N+1)^2$ moments (324).
Model Comparison – Single Assembly

- Max difference < 0.6%
- 12.7% improvement in eigenvalue for models with explicit channels.
- Accurate power dist. suggest inaccuracies in graphite reflector regions.

\[k_{eff} = 1.43190 \text{ (508.85 pcm)} \]

\[
\begin{array}{c|c|c|c}
\text{Temp} & \% \text{ Contrib. Fission} & \% \text{ Contrib. Capture} & \% \text{ Contrib. Leakage} \\
(K) & & & \\
293 & 58.93 & 38.23 & 2.93 \\
800 & 56.36 & 40.34 & 3.37 \\
\end{array}
\]
Minimum Critical Core Map

- 138 Fuel Assemblies
- 8 Control Assemblies
- Reflector Assemblies:
 - 40 Zr Clad
 - 175 Al Clad
Min. Crit. Core Results Visual Data Representation

Thermal Flux depression from control assemblies

CP-2 Permanent Reflector

Thermal Flux peak in reflector

Thermal Flux depression from stainless steel followers

Power Depression from Control Assemblies

Flux depression from control assemblies

Thermal Flux peak in reflector
Full Radial Hom. – Min. Crit. Core Results

- Axially integrated, radial power distribution
 - Spatially dependent cross sections.
 - Fuel cross sections are flux weighted across core.
- % Difference would be improved with more radial cross section regions.

$$k_{eff} = 1.01961 \ (1388.79 \text{ pcm})$$

<table>
<thead>
<tr>
<th>Temp (K)</th>
<th>% Contrib. Fission</th>
<th>% Contrib. Capture</th>
<th>% Contrib. Leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>42.00</td>
<td>43.68</td>
<td>12.16</td>
</tr>
<tr>
<td>800</td>
<td>38.01</td>
<td>46.18</td>
<td>13.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temp (K)</th>
<th>% Contrib. Fission</th>
<th>% Contrib. Capture</th>
<th>% Contrib. Leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>42.00</td>
<td>43.68</td>
<td>12.16</td>
</tr>
<tr>
<td>800</td>
<td>38.01</td>
<td>46.18</td>
<td>13.26</td>
</tr>
</tbody>
</table>
Full Fuel Hom. w/ Explicit Ch. – Min. Crit. Results.

- Axially integrated, radial power distribution
 - 29.7% improvement in RMS power distribution over fully homogenized model
- RMS can be further improved with more spatial dependent cross section regions.

$k_{eff} = 1.00575$ (24.68 pcm)

<table>
<thead>
<tr>
<th>Temp (K)</th>
<th>% Difference Fission</th>
<th>% Difference Capture</th>
<th>% Difference Leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>41.38</td>
<td>43.75</td>
<td>12.55</td>
</tr>
<tr>
<td>800</td>
<td>37.46</td>
<td>46.01</td>
<td>13.92</td>
</tr>
</tbody>
</table>
Axial Power Distribution Deviation

- Maximum difference < 1.6%
 - Occurs at peripheries – graphite reflector regions.
- Increased error at bottom of fuel region unclear.

- 88.01% improvement at bottom of core with explicit channels model.
- Diffusion simulation results are poor at the top of the core when B_4C rods are present at that location.
Conclusions

- Objectives of research:
 - Identification and quantification of key neutronics properties.
 - Effects of spatial homogenization and angular discretization.
 - Developed appropriate diffusion coefficient treatment.

- Single assembly, infinite lattice:
 - 0.076% APD deviation for full fuel homogenization with explicit channels model.
 - Showed high degree of anisotropy (required high order P_N solution).

- Min. Crit. Core:
 - 2.38% RPD deviation for full fuel homogenization with explicit channels model.
 - Including the streaming effects of the cooling channels, an 88.01% improvement was observed in control rod modeling.
Future Work in Steady State Calculations

- Develop directional diffusion coefficients from:
 - High fidelity first order transport solution based on:
 1. Fick’s Laws
 2. Eddington Tensor

- Superhomogenized cross sections (SPH)
 - Currently under testing for MAMMOTH
 - Preserves reaction rates (especially in reflector region)

- Enhance fidelity in control assemblies and reflector regions
 - Currently drives accuracy of power distribution in full core calculations
Questions?