
Implementation of Functional Expansion Tallies in the Monte Carlo Code
SHIFT

Ryan H. Stewart, Leslie Kerby

Idaho State University, Department of Nuclear Engineering and Health Physics,

Pocatello, ID 83209, stewryan@isu.edu

1 Abstract

Exascale computing allows for the creation of full scale nuclear reactor simu-
lations. It is the hope of these simulations to provide in depth research for
reactor safety and design via coupled neutronics and computational fluid dy-
namics. However, combining computational fluid dynamics and neutronics is
not inherently easy. Typically, neutroncis codes produce results, such as neu-
tron flux, energy deposition, etc, in terms of unit cells, where fluid dynamics
codes are produced in terms of meshes for finite element analysis. Given the two
types of results, it is not inherently easy to couple and transfer data between
them. It was decided that a new methodology of representing results was nec-
essary for ease and accuracy of transferring data. The first step in producing
transferable data sets was implementing a new method into the neutronics code.
The neutronics code Shift was chosen to perform reactor physics simulations,
due to it’s recent build for large scale computing. Shift currently utilizes cells
for implementing collision tallies and a surface mesh for surface current tallies.
To provide an easily transferable tally the Functional Expansion (FE) method
was chosen to represent units such as the neutron flux and surface fluence.
A method to determine the applicability of Functional Expansion Tallies (FETs)
in Shift was explored. Viability focused only on discrete estimators, in the form
of surface current and cell collision tallies (resulting in a cell flux). The imple-
menting basis set used were Legendre polynomials. An algorithm was created
to solve for the FET coefficients and was verified to calculate basic functions
correctly. The FET algorithm was unable to be implemented into Shift, but was
able to extract data from multiple Shift simulations and produce comparable
results.

2 Introduction

Shift is a new Monte Carlo (MC) transport code developed by Oak Ridge Na-
tional Laboratory for large scale reactor analysis. It is optimized to perform
MC transport calculations on current and near-future computing architectures,
while retaining the ability to run on small clusters and personal laptops. The de-
sign of Shift allows for modular and easily extensible implementation of features
such as physics and source implementations, hybrid capabilities with determin-
istic codes, and parallel decomposition [5]. Implementation of these features
allows for full utilization with large computing clusters to examine whole core

1

reactor behavior with the hope of coupling Shift with computational fluid dy-
namics codes, such as Nek5000. Coupling neutronics and computational fluid
dynamics codes allows the user to simulate feedback mechanism such as fuel
behavior and temperature in near real time. Shift utilizes traditional MC bin
tallying techniques to determine collision rates or flux values within the core.
Although this method provides good results, it can lead to excessive particle
requirements and run times depending on the amount of detail required.
Traditional MC tallies utilize two different classes of estimators, discrete and
track length, to extract useful information during the MC process. The infor-
mation is then separated into bins to create a histogram based solution for the
underlying physically meaningful result such as flux, or reaction rate. Each bin
requires many particles to provide meaningful results, and if a small bin is used
a large variance may occur due to too few particles being tallied. To obtain
reliable results the tally size would have to be increased, which degrades the
quality fo the answer. Another approach is to increase the number of particle
histories which would increase the run time. To avoid quality degradation and
increased run times, a new methodology was needed.
An attempt to address these issues using Functional Expansion Tallies (FETs)
was implemented by Griesheimer in the code MCNPX [1][2]. FETs use a set
of basis functions, which form a complete set, to estimate the shape of the flux
(or current) as a series expansion. This provides a continuous representation
of the flux compared to the bin method of traditional MC tallies. FETs also
have the ability to extract higher order information about the tally shape from
particle histories, while retaining the lower order information, such as integral
quantities. Along with this, FETs are not dependent on mesh or finite element
calculations which provides a method to transfer data between multiple codes
with differing geometric definitions.

3 Background

3.1 Surface Current FET

FETs rely on a series expansion to approximate the shape of an unknown dis-
tribution. The series used for expansion can vary depending on the boundary
conditions, geometry, and prior information of the distribution. Often times,
there is little knowledge of a priori information and it is best to select a basis
set known to have fast convergence rates for nearly smooth functions. Along
with this, for ease of implementation, it is often best to utilize a basis function
with an orthogonal basis, such as Chebyshev or Legendre polynomials. For the
work in Shift, Legendre Polynomials were selected for implementation.
A brief description of on how FETs can be constructed to describe physical
quantities within a reactor is described below. For this description, a one di-
mensional derivation is shown below for ease of understanding. For an in depth
derivation, readers should look at towards the many papers and dissertation
by Griesheimer [1][3]. The first step in implementing FETs into Shift was the

2

implementation of surface current. The surface current in the x-direction is
relatively easy to implement and can be expressed as a series expansion, J(x).
This can be generalized to multiple dimensions, collision types, energy levels,
etc. The finite expansion of J(x), using a basis function ψ(x), can be described
by

J(x) ≈
M∑
m=0

āmψm(x)kmρ(x) (1)

Where ρ(x) is the associated weighing function for the basis function used, and
km is the orthonormalization constant described by

km =
1

||ψm(x)||2
(2)

The individual coefficients to be described as

ām =

∫
|~j(x) ∗ ~s|ψm(x)ρ(x)dx (3)

In this sense, ām is the mth coefficient of the mth basis function, ψm(x) (in this
case, the Legendre polynomial, Pm(x)). In the case of Legendre polynomials,
ρ(x) = 1. The ease of using a constant associated weighing function provides
an inherent benefit over other basis functions which can have singularities or
other complex functions associated with their weighing function. Monte Carlo
does not utilize an infinite number of particles, and thus an estimate of ām is
required, namely

âm =
1

N

N∑
n=1

K∑
k=1

wn,kψm(xn,k) (4)

Where in the context of a surface estimator; wn is the weight of the nth particle,
and ψm(xn) is the contribution of the nth particle to the mth order Legendre
polynomial. N is the total number of particles that contributed to the coeffi-
cient, and k is the number of times the nth particle crosses the surface. For the
derivation above, only one surface is described, if multiple surfaces were needed,
then a coefficient vector would be required for each surface.
Expanding the current to two dimensions is not trivial and requires some ma-
nipulation of âm. A detailed rework is not present however the results are given
with a brief description [3]. To incorporate a second dimension, a second basis
function, call it ψi(yn,k), is introduced. This requires a slight rework of equa-
tion (4), where âm becomes âmi to incorporate the second dimension. This
means âmi is a M x I matrix holding all of the coefficients. Where equation (4)
becomes

âmi =
1

N

N∑
n=1

K∑
k=1

wn,kψm(xn,k)ψi(yn,k) (5)

3

3.2 Collision FET

The second step in implementing FETs into Shift was the development of cell
(collision) tallies. Cell tallies are found in a similar way to surface tallies. In a
MC simulation, if a particle undergoes a collision within the cell of interest it is
sampled for the FET. This only requires a slight rework of section (3.1). First,
the flux is used in place of the current, thus a finite expansion of the flux φ(x)
can be written as

φ(x) ≈
M∑
m=0

bmψm(x)kmρ(x) (6)

Where again, the orthogonality constant can be described by (2), and bm is the
expansion coefficient. The expansion coefficient can be described by

b̄m =

∫
φ(x)ψm(x)ρ(x)dx (7)

The expansion coefficient is described in a slightly different manor, due to the
underlying physics involved with a collision tally. Following the same logic
from the surface tally, when a Monte Carlo method is used, an estimate of the
coefficient yields

b̂m =
1

N

N∑
n=1

K∑
k=1

wn,kψm(xn,k)

Σt(xn,k)
(8)

Again, when using the Legendre polynomials ρ(x) is simply 1. The difference
between equation (4) and equation (8) is the denominator. In the denominator
for the cell tally is the macroscopic transport cross-section. This cross-section
determines the probability of a collision within the cell, which acts essentially
as a secondary weighing function. Where similarly, k is the frequency of the nth

particle colliding in the cell of interest.
To incorporate all three dimension for equation (8), a third basis function is

required, call it ψj(zn,k). Again, a slight rework of b̂m becomes b̂mij , thus for
a three dimensional FET, a three dimensional matrix M x I x J is required.
Similar to the surface current, equation (8) becomes

b̂mij =
1

N

N∑
n=1

K∑
k=1

wn,kψm(xn,k)ψi(yn,k)ψj(zn,k)

Σt(xn,k, yn,k, zn,k)
(9)

3.3 Monte Carlo Uncertainty in the FET

To effectively sample a parameter, the Monte Carlo technique incorporates a
stochastic component, which causes an intrinsic statistical uncertainty associ-
ated with it. Functional expansion tallies are no exception to this and each
coefficient will have a statistical uncertainty associated with it. Along with
this, the final expression of the current will have an uncertainty. The variance

4

for each coefficient, âm is found using a derivative of the sum of squares law and
is found to be

σ̂2
âm =

∑N
n=1[

∑K
k=0 wn,kψm(xn,k)]2 − 1

N [
∑N
n=1

∑K
k=0 wn,kψm(xn,k)]2

N(N − 1)
(10)

This uncertainty is only an estimator of the real uncertainty, where the real
uncertainty would requires a prior knowledge of the probability density function.
This knowledge is rarely known, and thus a statistical estimator provides a
reasonable estimate of the uncertainty.
With the coefficients of the basis function found, along with their associated
uncertainties, the Monte Carlo approximation of J(x) can be written as

Ĵ(x) =

M∑
m=0

âmkmψm(x) (11)

As with the coefficients, Monte Carlo approximations are meaningless without
the corresponding variance, which is given by the two-norm variances

σ2
Ĵ(x)

=

M∑
m=0

σ2
âmkm (12)

A similar description can be given for collision tallies. However, only the re-
sults are shown below for the variance in the coefficients, equation (13), the

approximation of φ̂(x), equation (14), and the total uncertainty, equation (15).

σ2
b̂m

=
1

N(N − 1)

N∑
n=1

[

K∑
k=0

wn,k
Σt(xn,k)

ψm(xn,k)]2

− 1

N − 1
[

1

N

N∑
n=1

K∑
k=0

wn,k
Σt(xn,k)

ψm(xn,k)]2

(13)

φ̂(x) =

M∑
m=0

b̂mkmψm(x) (14)

σ2
φ̂(x)

=

M∑
m=0

σ2
b̂m
km (15)

3.4 Truncation Error & Optimization in FETs

The current in equation (1) is only exact if an infinite number of coefficients
are calculated. An infinite number of coefficients is not possible when utilizing
a Monte Carlo system, thus the coefficients must be truncated at some value,
which introduces a truncation error. The truncation error, Em(x), introduced

5

is equal to the value of all the expansion terms that are greater than truncated
coefficient M.

Em(x) = |J(x)− Jm(x)| = |
∞∑

n=M+1

âmkmψm(x)| (16)

For each coefficient, âm, added, the truncation error is decreased by a factor of
â2m. However, each time a new coefficient is added the statistical error is in-
creased due to the new coefficients error being added. The increase in statistical
error is given by σ̂2

âm
km, or the variance associated with the âm term. It is seen

that the two terms are inversely related, and thus an optimization can be found
to relate the two quantities and determine reliability. This optimization can be
found in the ratio between the statistical error and the truncation error, given
as

R2
m =

σ̂2
âm
km

â2m
(17)

Equation (17) gives a relative cost-to-benefit ratio to including the nth term of
the series. This ratio can be used as a test to determine if the nth expansion
coefficient has converged on the true solution and should be included. Where
an R2

n >> 1 indicates that the coefficient has not converged on the true solution
and will yield poor results for the function approximation. R2

n << 1 indicates
that the coefficient has converged on the solution and will yield good results for
the function. R2

n ≈ 1 indicates that the coefficient should be examined carefully
before including the term for the function approximation. In this range, it is
possible to run more particles to allow the coefficient to converge and be included
in the approximation.

4 Algorithm

4.1 One Dimension

The algorithm for solving the FET’s was written in C++ for ease of integration
into SHIFT. To solve for the FETs, data had to be obtained from in SHIFT
and transfered to the FET algorithm. The FET algorithm requires the weight,
particle position, and the total macroscopic cross-section. With this informa-
tion, an approximation can be made for current or flux shape with an FET.
The FET algorithm was simple in nature to allow for the most efficient method
in calculating tallies. The first step was to obtain the data from SHIFT that
would be required. This involved activating the algorithm each time a tally
was interacted with. For example, if a surface current was desired, each time a
particle passed a surface to be tallied the FET algorithm was required. When a
tally interaction occurred, the particle weight, particle position and total macro-
scopic cross-section was transfered to the FET algorithm. For the position, each
direction is bounded by a maxima and minima which is used to transfer the par-
ticles position from the reactor space to Legendre space, which has boundaries

6

at [-1,1]. This is done using the transform equation in (18). Where x̃ is the
Legendre space transform of position x in reactor space.

x̃ = 2
x− xmin

xmax − xmin
− 1 (18)

The transformed x̃ is then plugged into the Legendre polynomial, Pm(x) and
solved. Each coefficient for the Legendre polynomial is solved for and a vector
containing the coefficients is produced. This process can be repeated multi-
ple times depending on the number of tally interactions occurring for a single
particle. Each time a particle interaction occurs, the Legendre coefficients are
summed to create an. Once a particle is killed, the an’s are summed to create
an estimate of âm, designated as An. In addition to this, for each an, a separate
sum of a2n is kept, and designated as Am. The value of Am is used in post
processing for calculating the coefficient variance. Along with this, a running
tally for the number of particle interactions for each tally of interest is kept for
post processing.
Once the simulation is complete, and all of the histories/particles have been run,
post processing is performed to find the values of âm, their associate variance,
the current, and the overall variance through the surface. For the current in one
dimension, to find âm, the final An is divided by the total number of particles
crossing the surface of interest. This normalizes the coefficients according to
the particle fluence through the surface.
To find the variance, equation (10) was used where [

∑N
n=1

∑K
k=0 wn,kψm(x)]2

is represented by Am, and 1
N [

∑N
n=1

∑K
k=0 wn,kψm(x)]2 is represented by An.

Once the variance is found for each coefficient, the current can be written as

J̃m(x̃) =

M∑
m=0

âmkmPm(x̃)± σâm (19)

It should be noted that equation (19) is still contained in Legendre space, that
is [-1,1]. If the user desired to transform the equation to original units, a simple
transformation of x̃ is required, as in equation (20).

x̃ = 2
x− xmin

xmax − xmin
− 1 (20)

Where x̃ from equation (19) is replaced with equation (20). Along with this,
the orthonormalization constant must be transformed to k′m via equation (21).

k′m =
2m+ 1

xmax − xmin
(21)

With the transformations from equations (20) and (21) the current for the orig-
inal tally domain is described as

Ĵm(x) =
M∑
m=0

âmk
′
mPm(2

x− xmin
xmax − xmin

− 1)± σâm (22)

7

4.2 Surface Tallies

The surface tally algorithm to solve for two dimensions is not trivial. If both
an x, and y directions are required, then a coefficient matrix for the current is
created. To record all of these, a I x J matrix is created, and labeled as Aij .
Where i is the number of coefficients in the x direction, and j is the number of
coefficients in the y direction. Thus, the current can be written as

Ĵ(x̃, ỹ) =

I∑
i=0

J∑
j=0

âijkijψi(x̃)ψj(ỹ) (23)

The uncertainty for the two dimensional surface tally is not yet implemented in
the algorithm.

4.3 Cell Tallies

The cell tally algorithm follows the same general guidelines of the surface tally.
In addition to needing the particle weight and position, the total-macroscopic
cross-section is required. Again, similar to the surface tally, if an x, y, and z
direction are required then a I x J xK matrix is required to store the coefficients.
Where in this case, three variables are required which yields a matrix labeled as
Aijk. Where i is the number of coefficients in the x direction, j is the number
of coefficients in the y direction, and k is the number of coefficients in the z
direction. Thus, the flux can be written as

φ̂(x̃, ỹ, z̃) =

I∑
i=0

J∑
j=0

K∑
k=0

âijkk
′
ijkψi(x̃)ψj(ỹ)ψk(z̃) (24)

The uncertainty for the three dimensional flux tally is not yet implemented in
the algorithm.

5 Verification & Validation

5.1 Verification of Functionality

The first phase of the verification process was to ensure the algorithm was per-
forming the intended calculations and producing reliable results. To test this, a
test function was developed. The test function used rejection sampling to sam-
ple the shape of a user defined distribution. For the sake of testing, multiple
distributions were selected to determine accurate results, and to learn additional
nuances of FET properties; such as time requirements, optimal coefficient selec-
tion, particle number, and statistical uncertainties.
For the first test, a distribution of 5x3 − x2 − 2x + 4 was used. This initial
test was to determine if the algorithm created a set of Legendre polynomials
that matched the distribution function. The results were promising, for nearly
any number of particles, as seen in Table 1. For the results in Table 1, seven

8

coefficients. These coefficients can be seen in Table 2. Along with these, the
uncertainty in each coefficient can be seen in Table 3.

Table 1: FET Algorithm Results
Position Dist. FE Diff.

1e5 1e6 1e7 1e8 1e9

-1.0 0.00 -2.32e-2 1.91e-3 -1.41e-3 1.63e-3 3.41e-4
-0.6 3.76 -2.94e-2 3.04e-3 3.94e-3 4.68e-4 1.96e-5
-0.2 4.32 -1.74e-2 -5.40e-3 -3.09e-3 -6.71e-4 4.04e-5
0.2 3.60 1.98e-2 -4.01e-3 -1.26e-4 -1.66e-4 5.83e-5
0.6 3.52 1.04e-2 6.93e-3 -1.20e-3 -2.88e-4 -2.15e-4
1.0 6.00 -7.93e-2 -1.11e-2 1.90e-2 5.98e-3 2.254e-4

Table 2: FET Coefficient Values
Coefficient FE

1e5 1e6 1e7 1e8 1e9

P0(x) 3.67 3.67 3.67 3.67 3.67
P1(x) 0.99 1.00 1.00 1.00 1.00
P2(x) -0.66 -0.67 -0.67 -0.67 -0.67
P3(x) 2.05 2.00 2.00 2.00 2.00
P4(x) 3.10e-3 1.13e-2 2.35e-4 -7.11e-4 -2.31e-4
P5(x) -1.21e-2 1.92e-3 -7.83e-3 -1.36e-3 -1.31e-4
P6(x) 3.74e-2 -4.45e-3 -6.51e-3 -2.44e-3 -2.14e-4

Table 3: FET Coefficient Uncertainty
Coefficient FE

1e5 1e6 1e7 1e8 1e9

P0(x) 3.14e-3 9.97e-4 3.15e-4 1.00e-4 3.15e-5
P1(x) 6.71e-3 2.12e-3 6.70e-4 2.12e-4 6.70e-5
P2(x) 5.46e-3 1.73e-3 5.45e-4 1.72e-4 5.45e-5
P3(x) 4.56e-3 1.44e-3 4.54e-4 1.44e-4 4.55e-5
P4(x) 4.07e-3 1.28e-3 4.06e-4 1.28e-4 4.06e-5
P5(x) 3.69e-3 1.16e-3 3.66e-4 1.16e-4 3.66e-5
P6(x) 3.39e-3 1.07e-3 3.37e-4 1.06e-4 3.37e-5

It can be seen from Tables 1 - 3 that increasing the number of particles de-
crease the difference between the real distribution and the functional expansion
distribution. Along with this, an increase in the number of particles decreases
the uncertainty for the individual coefficients. This provides confidence that the
FET algorithm is performing its intended functions and calculating an accurate

9

result with a test function. A graphical representation of this can be seen in
Figure 1.

Figure 1: Comparison for number of particles FE to 5x3 − x2 − 2x+ 4

Both the surface, and collision tallies require multiple dimensions to express
the current or the flux. To express the surface tallies, the original test function
was utilized in both the x and y directions. On the left hand side of Figure
2 is both the direct calculation and the FET approximation fo the test func-
tion, where in the z-axis would be equivalent to the current as a function of x
and y. Along with this, the right hand side of Figure 2 shows the difference
between the FET and the direct calculation of the test function. Due to this
test function being cubic in order, the higher order coefficients remain small
and unsteady, but congregate around zero. Thus, the higher order terms show
a lower importance to the solution, and could be neglected if desired. This is
purely a consequence of using a contrived test function, and not indicative of
true Monte Carlo simulations. In a simulation regarding a neutron population
passing through a surface, each coefficient value would converge towards a true
value.

10

Figure 2: 3D FET & Difference Map

As mentioned, the collision tallies are used to represent the flux in a three-
dimensional cell. Figure 3 represents the neutron flux as a density plot through-
out a cell for the FET representation and the difference between the FET and
a direct calculation. For ease of differentiation, a simple quadratic, x2y2z2 is
used. Where the left hand side is representative of the FET solution and the
right hand side is representative of the direct solution.

Figure 3: Density Plot & Difference Map

The opacity through out the cell is used for ease of view-ability, where at the
center the flux would be zero. As with both the surface, and the two dimensional
plots, the largest difference between the direct calculation and the FET, is the
edges. This is a consequence of using FETs, which can lead to varying degrees
of accuracy between the center and the boundaries of the problem.

11

5.2 Verification in Shift

The FET algorithm was unable to be implemented into Shift, and thus an in-
tegrated comparison between the FETs and histogram based tallies was unable
to be made. Despite this, the information required for the FETs was able to be
extracted during the process, and could be analyzed to determine if the FET
algorithm could analyze the data and produce a corresponding flux value. For
this verification, only the cell tally was examined. To determine applicability,
a simple simulation was created and tested. This simulation included a 2 cm x
2 cm x 2 cm cube of graphite with a point source at the origin. The neutron
energy was set at 0.0025 ev to allow for diffusion to occur within the cell. The
cell was split into 27 different cells to create a mesh to compare with the FET,
which analyzed the cube as a whole. The mesh had consisted of a 3 x 3 x 3
matrix, with each block measuring 0.666 cm x 0.666 cm x 0.666 cm. This pro-
vided a rough mesh to compare with the FET. The mesh lay out can be seen as
a cross section, at z = 0, in Figure 4. Graphite was chosen to allow for multiple
collision to occur with each particle generated before exiting the cell. A high
collision rate would allow for good statistics and an ease in determining FET
coefficients.

Figure 4: Scale Input Geometry

12

To utilize the FET algorithm, the particles weight, position, and the macroscopic
transport cross-section were pulled from Shift for each collision that occurred.
All of this information was then written to a text file. The file was edited to
remove any superfluous information, and was then read in by a modified FET
algorithm. Due to this, there were limitations on the number of particles that
could be used in a simulation. It was found that approximately 106 particles
was the maximum allowable particle number to allow for manipulation of the
output file. Over this number of particles created output files on the order of
0.5 GB, and prevented manual manipulation of the files.
The FETs ability to determine flux shape was determined using three different
method. These methods all had the same geometry, that is a 2 cm3 graphite
block, and used 10 coefficients in the FE unless otherwise stated. The first
method to measure the FET algorithms ability was to vary the number of par-
ticles run for each simulation. This resulted in four simulations with 103, 104,
105, and 106 particles. Figure 5 shows the FET approximation for varying par-
ticle counts, in the y direction, where the x and z dimensions are held constant
at zero.

Figure 5: Particle Count Impact on Flux Shape

Figure 5 reveals that the shape of the flux only changes slightly with an increased
particle count. This matches previous validation, as performed in Section 5.1.
The difference between 10e3 and 10e4 varies 5%, the difference between 10e5

and 10e6 varies by less than 1%. This indicates that the FE is converging on
the true solution. Along with this, the flux shape follows the expected pattern
for diffusion within a scattering media. Where along the center is the highest
neutron flux rate, and it quickly dies off as the neutrons diffuse towards the
boundaries of the media.
The second method used in examining the FET algorithm was to examine the
impact on the number of coefficients used. The number of coefficients was al-
tered between 5, 10, and 15. Each simulation was run with 105 particles. Figure

13

6 shows the impact of expansion coefficient truncation.

Figure 6: Coefficient Truncation Impact on Flux Shape

Figure 6 presents an important point; for a FET to provide valid results, the
number of coefficients must be able to accurately represent the underlying
physics occurring within the simulation. For example, when the number of
coefficients is truncated from 15 to 5, the peak neutron flux drops by over 75%.
Along with this, a drop of 40% occurs between 15 and 10 coefficients. This
being said, it is important to consider the required number of coefficients to
provide an accurate response for the problem at present. Where typically, a
more conservative approach will yield better results. The results presented here
are slightly misleading and the results will not typically vary this much due to
number of coefficients. Much of this variation is due to the fact that a point
source was used. When considering a point source, the flux near the center ap-
proaches infinity which is impossible for any type of expansion to replicate. This
reality, can limit FETs ability to accurately describe the neutron flux in areas
with drastic changes, and additional methods may be required for validation.
Although the flux peak is higher when using 15 coefficients, only 10 coefficients
were used for the methods to determine the FET algorithm functionality. The
reason for 10 coefficients was to decreases the time required for model verifica-
tion, while still allowing general trends to be identified.
It is important to note that the x-direction had large oscillations as the flux
moved from the center of the core. Figure 7 shows the oscillations in the x
dimension, when y and z are held constant at 0. A similar nature can be seen
in Figure 8, which only holds z constant at 0.

14

Figure 7: 2D Flux Shape with y=0 and z=0

Figure 8: 3D Flux Shape with z=0

However, Figure 9 shows that when the x direction is held constant, there are
no oscillatory effects. Another representation of this can be seen in Figure 10.
Where the density plot represents the same data as Figure 9. This density plot
representation of the data provides an easier to view manor for quantitative
information.

15

Figure 9: 2D Flux Shape with x=0

Figure 10: Density Plot with x=0

It is assumed that the y and z dimension coefficients are presenting the solu-
tions correctly, but there is an error within the algorithm when calculating the
x-dimension coefficients. This error is currently unknown, but will hopefully be
found and corrected soon.

16

The third method to examine how the FET algorithm functioned was to solve
for varying source sizes. To examine this, four difference source sizes were used;
a point source, a 8.0e−6 cm3 cube, a 8.0e−3 cm3 cube, and a 8.0 cm3 cube
(which encompassed the entire graphite cube). Where it is expected, as the
source size increases, the magnitude of the peak will decrease. Figure 11 shows
the comparison between the multiple source types.

Figure 11: 2D Source Comparison

As noted, the neutron flux at the center cube decreases as the source is spread
out further over the cube. As the source gets larger, the flux at the center con-
tinually drops, until a near flat source is found when the source size equals the
entirety of the problem. Both cases help solidify the functionality of the FET,
as each case represents the change in physics occurring during the diffusion pro-
cess.
Due to the error in the x-dimension, a direct comparison between the mesh tally
and the functional expansion tally was not able to be performed. However, some
qualitative remarks can be made by comparing the mesh to FET data. The data
drawn from Shift was consisted of the 3 x 3 x 3 mesh, to relate these, the x and
y dimensions are presented. Each z mesh was given a figure, where the lower
mesh ran from −1.0 cm to −0.333 cm, the middle mesh ran from −0.333 cm to
0.333 cm, and the upper mesh ran from 0.333 cm to 1.0 cm. Figure 12 shows
the flux for the mesh tallies.

17

Figure 12: Flux Values for the Lower, Middle and Upper Mesh

From Figure 12, the same trend can be seen of basic diffusion within the cell.
In the middle mesh, the center is an order of magnitude greater than the sur-
rounding area, which corresponds to the point source at the center. Along with
this, it is noted that the order of magnitude between the mesh tally and the
various FETs are congruent, which indicates the FETs are calculating the flux
correctly, even with the x-dimension having oscillations. Overall, while the FET
is not fully functional, it does provide enough information to warrant further
research and implementation into Shift.

6 Optimization

Creating the algorithm to solve for FETs underwent multiple iterations to cre-
ate a semi-optimized function which performs the calculations efficiently and
accurately. The first iteration of the Legendre solver involved using a recursion
formula to only Legendre polynomial in question. To solve for this, the following
recursion formula was used

Pn(x) =
(2 ∗ n− 1)xPn−1 − (n− 1)Pn−2

n
(25)

Where P0(x) = 1 and P1(x) = x. Using the recursion relation requires the

relation to be called
∑N
n=1 x times to solve for all the coefficients. Most FETs

require 20 or fewer coefficients to converge on the solution, and thus a direct cal-
culation approach can save both time and the number of calculations required.

18

If 20 coefficients are used, then 2310 calculations are required per particle, us-
ing the recursion method. To minimize the number of calculations required,
the first twelve solutions are solved for explicitly, where the remained are solved
via equation (25). Using the explicit solutions for the first twelve coefficients
reduces the number of calculations by 21%, down to 1817 calculations. Directly
solving for the first twelve coefficients is not initially intuitive, but additional
optimization provides a basis for choosing twelve coefficients.
In addition to directly solving the Legendre coefficients for the first twelve co-
efficients, the Legendre solver function was optimized by vectorizing the coef-
ficients. This process involved solving for each coefficient required during one
pass. Initially, the Legendre solver function was called each time a coefficient
was required. Thus, if 20 coefficients were required, then the Legendre solver
function is called twenty times to obtain each coefficient. This prevented saving
any of the data obtained from performing the function previously, which meant
that every time the function was called, it had to recalculate all the coefficients,
even if they had already been calculated.
The next iteration involved vectorization of the coefficients. Vectorization cre-
ated a vector of coefficients, which allowed the Legendre solver function to be
called once, rather than multiple times. The vectorization process also allowed
each coefficient that had previously been calculated to be saved, and used for
any higher order functions. For example, if the 20th coefficient was being cal-
culated using (25), then P19 and P18 had already been calculated and those
values could be plugged in and P20(x) could be solved for quickly. This pro-
cess dramatically decreased the number of calculations required to solve for the
coefficients. If the example of 20 coefficients is used again, and no direct cal-
culations are present then the number of calculations required is still 2310. If
vectorization is utilized, and the values for solved Legendre functions are saved
then only 210 calculations are required, which decreases the number of calcula-
tions by 90%. If direct calculations are included, then only 159 calculations are
required, which decreases the number of calculations by 93%. This reduction
in the number of computations required per particle helps reduce the time to
solve for the FETs in general. Returning to the number of direct calculations
required, it was found that the number of calculations required for the direct
method was the coefficient number plus one. Thus around the tenth coefficient,
it took nearly as many calculations to perform a direct calculation as it does
to calculate the recursion form. The reduction in calculation time required to
solve fo the functional expansion can be seen in Table 4.

Table 4: Vectorization & Direct Calculation Optimization
Method Time (s)

Number of Particles 1e5 1e6 1e7 1e8 1e9

Recursion 1.64 16.3 163 1640 16400
Direct + Vectorization 0.213 2.13 21.6 213 2160

19

From Table 4, when both the direct calculation and vectorization are imple-
mented the calculation time is reduced by 85%. This reduction in time will
be extremely valuable when a Monte Carlo problem requires multiple histories,
each with millions or billions of particles. If, the original recursion time was
required, the FET would potentially be useless in the application of Exascale
computing.
Other miscellaneous optimization techniques steamed from the choice data stor-
age. This included using multiple 2D matrix arrays to store different surfaces
that required tallies. Multiple 2D matrices were found to be easier to manip-
ulate and required less manipulations to be performed when accessing storage
locations, than using one large 3D matrix.

7 Proposed Implementation into SHIFT

Shift provides users with multiple ways to score tallies for a Monte Carlo simu-
lation. Each tally type is accessed through a central class in Shift called Tallier.
This class registers each type of tally that is going to be used in the simulation.
As a first attempt to implement the functional expansion tally, it was placed
inside the tally which counted surface crossings. Along with this, a separate
template class was created to allow the FET to be a stand alone tally within
Shift, however, due to time constraints this template class was not fully im-
plemented. This implementation was attempted but not achieved for multiple
reasons, the largest being a time constraint. However, a reasonable amount of
insight was gained into altering the Shift source code which will be presented
to help future implementation into Shift.
Shift is split into multiple directories, each related to their function for perform-
ing MC neutron transport. For implementing a new tally type into Shift, there
are three directories within Shift that are relevant. The first is ‘mc physics‘,
where in the header file ‘SC.Physics.t.hh‘, a multitude of information can be
found for particle interactions. This is important for collision tallies due to
the fact that the total transport cross-section can be found for each colli-
sion that occurs. The next directory is ‘mc transport‘, where the header file
‘Domain Transporter.t.hh‘ describes particle movement within the geometry.
Finally, the most important directory is ‘mc tallies‘, which contains the ‘Tal-
lier.t.hh‘ and ‘Tallier.hh‘ files.
It is assumed that the easiest method to implement the FET algorithm is to
include all the header and program files within the ‘mc tallies‘ directory. From
there, it would be appropriate to initialize any classes within ‘Tallier.hh‘ for use
in ‘Tallier.t.hh‘. Building a distinct template within ‘Tallier.t.hh‘ will allow the
user to access the particles information via its class, where the particle weight
and position can be accessed via ‘p.wt()‘ and ‘p.pos()‘ respectively. It should
be noted that the x,y,z coordinates are given in a single cell, which will require
some manipulation to access.

20

8 Conclusions

The functional expansion tallies have the ability to produce quantities such as
the neutron flux and current in codes, such as Shift, as functional expansions
rather than the historical bin method. Functional expansions provides new
opportunities in the ability to couple multiples codes, often using multiple ge-
ometric descriptions, with relative ease. It is for this reason, that functional
expansion tallies were attempted to be implemented into Shift. Although FETs
were not fully implemented into Shift, they algorithm performing the tallies was
able to be used on generated output from Shift. This allowed a baseline evalua-
tion to be performed and determine the functionality and reliability of the FET
algorithm.

9 Further Research

There is still much work to be done for implementing FETs into Shift. Much of
the work relies on adapting the current code to account for different scenarios.
Currently, the only FETs that are allowed utilize Legendre polynomials for
Cartesian coordinates. This is useless when using Shift to describe cylindrical
or spherical geometries. To aid in future research it would be beneficial to
include Associated Legendre polynomials, which are the canonical solutions to
the general Legendre equation. Along with this, additional polynomials can and
should be included to for stability in using FETs. Multiple types of basis sets
broadens their uses within the code. For example, Zernike polynomials could
also be used for cylindrical functional expansions, as is being used in Serpent
[6][4]. Along with this a plethora of additional basis sets can be included and
used to analyze models where specific boundaries are present. For example,
Bessel functions or Laguerre polynomials can be used as infinite or semi-infinite
basis sets. With multiple basis sets, code could then be written to analyze the
geometry, boundary conditions, and any a priori information to choose the most
efficient set of FET for the given problem. This capability would allow FETs to
be versatile enough to complete with the histogram bin approach that is typical
with MC.
Another approach that will need to be considered for implementing FETs into
Shift, are the inclusion of track length estimators. Track length estimators are
typically superior to collision estimators at tallying volumetric fluxes within a
cell. In addition to track length estimators, it has been suggested to use FETs
to create the response matrix, which is valuable in linking Monte Carlo and
deterministic codes.
For the current implementation, only one cell/surface is allowed to be sampled.
In a large reactor simulation, this would be useless, as multiple cells/surfaces
will be required for sampling. This will require minor modifications to the
code to allow for multiple FETs to be incorporated at once. Currently, the
FET algorithm is called from inside the base collision tally. A separate tally
template was built in Shift, but not utilized. To allow the user to only use FETs

21

this will need to be set up, and built into the Shift input file reader to allow
for user definition for the number of coefficients to be used. It will also need
to be incorporated into the output file and H5 file creator to allow for the user
to easily access the coefficients provided. Along with this, additional work can
be done with the current code to clean it up and attempt to both generalize
it, for use with multiple types of basis functions, and optimize it. Some work
has already been done in the optimization section but additional work can be
done to decrease the number of calculations or minimize the number of variables
used.
Finally, the surface tally was not tested or implemented into Shift. This was
due to an error in the Shift code which prevent building surface tallies. It is the
hope that when the surface tallies are implemented into Shift, the FET for the
surface will be implemented and tested as well.

References

[1] David Griesheimer. Function expansion tallies for monte carlo simulations.

[2] David Griesheimer and William Martin. Estimating the global scalar flux
distribution with orthogonal function expansion.

[3] David Griesheimer and William Martin. Two dimensional functional expan-
sion tallies for monte carlo simulations.

[4] Leslie Kerby, Aaron Tumulak, Jaakko Leppanen, and Ville Valtavirta. Pre-
liminary serpent-moose coupling and implementation of functional expan-
sion tallies in serpent. In M&C 2017.

[5] Tara Pandya, Seth Johnson, Gregory Davidson, Thomas Evans, and Steven
Hamilton. Shift: A massively parallel monte carlo radiation transport pack-
age.

[6] Brycen Wendt, Leslie Kerby, Aaron Tumulak, Jaakko Leppanen, and Mark
DeHart. Advancement of functional expansion tallies capabilities in serpent
2.

22

