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Introduction

• Radiation hydrodynamics

• Past research in finite element radiation transport

• Current research objectives

• Methodology

• Test problems and results

• Conclusion

• Future work
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Introduction

• Radiation hydrodynamics
• High energy density problems - astrophysics, inertial confinement fusion
• Fluid emits, absorbs, and scatters photons
• Radiation field within a fluid influences the energy and momentum of the

fluid

• Can be impractical to performed experimentally but experiments are
performed
https://lasers.llnl.gov/media/video-gallery/ride-the-beamline

• High energy density physics simulation tools
• Behavior of fluid (kinematics and thermodynamics)
• Generation, transport, absorption of radiation
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Introduction

https://computation.llnl.gov/project/blast/

multi-material shock
hydrodynamics
problem:
8th order kinematics,
7th order
thermodynamics

• BLAST: shock hydrodynamics code developed at LLNL
• In particular, model National Ignition Facility (NIF) shots

• High order finite elements

• Unstructured meshes with curved edges/surfaces

• No radiation transport implementation
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Introduction

• Transport community studying/using finite element method for
radiation transport for several decades
• Previously, other spatial discretization methods were employed (e.g. finite

difference)

• Three applicable areas of development: finite element order, diffusion
limit, and meshes
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Introduction

• High-order finite elements
• Early (and continual) development in low order methods (LD, BLD, PWLD)
• Obtain accuracy by increasing order instead of refining the mesh
• Higher order is more computationally expensive; it has begun to be

researched with the development of advanced computers
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Introduction

• Research in the thick diffusion limit in the last several decades
• Asymptotic analysis
• Developed criteria to evaluate performance of a method1

• Research of various spatial grids in Cartesian geometry
• Quadrilateral and triangular in 2-D, Tetrahedral in 3-D
• Structured/unstructured meshes
• Several papers acknowledge meshes with curved edges/surfaces but do

not perform studies
• It is common to study straight mesh edges, or approximate edges with an

average outward normal direction

1Marvin L. Adams. Discontinuous finite element transport solutions in thick
diffusive problems. Nuclear Science and Engineering, (137):298-333, 2001.
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Research Objectives

• Develop radiation transport solver to eventually integrate with BLAST
• High order finite elements
• Meshes with curved edges
• Use Modular Finite Element Methods (MFEM) to set up system of

equations
• General finite element library developed at LLNL

• Characterize the spatial discretization of the solver with a suite of test
problems
• Analytic uniform infinite medium problem
• Multi-material problem
• Convergence study on mesh refinement and finite element order
• Homogeneous diffusion limit problems
• Diffusion limit boundary layer problem
• Multi-region problem with varying optical thicknesses

LLNL-PRES-XXXXXX



9/1

Transport Discretization

• Transport equation has seven variables
• Cannot solve analytically
• Make assumptions - discretize

• Assume steady-state and mono-energetic

• Currently not investigating the effects of quadrature discretization

• Using level-symmetric angular quadrature

• Load pre-generated quadrature set at run time
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Finite Element Discretization

• Multiply transport equation by weight function and integrate over cell k∫
V

wkiΩ · ∇ψ (x ,Ω) +

∫
V

wkiσψ (x ,Ω) =

1
4π

∫
V

wkiσsφ (x) +
1

4π

∫
V

wkiS0

• Approximate flux in terms of high-order polynomial basis functions for
all Jk basis and weight functions

ψ (x ,Ω) ≈
Jk∑

j=1

ψkj (Ω) bkj (x)

• This results in a system of equations to solve for the angular flux at
every support point in the mesh

• System of equations solved using UMFPack (i.e. LU decomposition)
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Solution Methods

• Two methods to solve for scalar flux:
1. Source iteration

• Can solve for each angular flux for each angle in parallel
• Sum weighted angular fluxes
• Converge on scalar flux

Ω · ∇ψ(l+1)
m + σψ

(l+1)
m =

1
4π
σsφ

(l) +
1

4π
S0

φ(l+1) =
M∑

m=1

∆mψ
(l+1)
m

‖φ(l+1) − φ(l)‖∞ < εconv

2. Directly solving for angular flux in all directions
• Discussed later
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Test Problem 1: Uniform Infinite Medium with Scattering

• Steady-state, mono-energetic transport equation

Ω · ∇ψ (x ,Ω) + σψ (x ,Ω) =
1

4π

∫
4π
σsψ

(
x ,Ω′

)
dΩ′ +

1
4π

S0

• Analytical solution is not spatially dependent

σψ =
1

4π
σsφ +

1
4π

S0

σφ = σsφ + S0

φ =
S0

σa

• Tests spatial discretization, quadrature, boundary conditions, and
source iteration implementation
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Test Problem 1: Uniform Infinite Medium with Scattering

• σ = 1 cm−1

• σs = 0.3 cm−1

• S0 = 0.7 cm−2 s−1

• ψinc = S0
4πσa

• S8 level-symmetric
quadrature

• 8th order finite elements

• 8th order mesh edges

• 71,928 unknowns

• 888 zones
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Test Problem 2: Reed-Hill Problem

Reed-Hill problem description
x ∈ (0, 2) x ∈ (2, 3) x ∈ (3, 5) x ∈ (5, 6) x ∈ (6, 8)

S0 0 1.0 0 0 50
σ 1.0 1.0 0 5.0 50
σs 0 0.9 0 0 0
σa 1.0 0.1 0 5.0 50

Reed-Hill DGFEM solution

• Multiregion 1-D
problem
• Scattering ratio of 0.9

region
• Void region
• Strong absorption

region
• Strong absorption and

source region

• Sharp flux changes
between regions

• Vacuum boundary on
left

• Reflecting boundary on
right
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Test Problem 2: Reed-Hill Problem

Reed-Hill DGFEM solution on 2-D mesh

• Periodic boundaries on top
and bottom

• S8 level-symmetric
quadrature

• 8th order finite elements

• 100 spatial cells across

• Reference solution: 1-D
step differencing on 16,000
spatial cells

• Relative L2 error is 0.04167

• Error may be reduced by
ignoring the “tail”
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Test Problem 3: Convergence Study

• Converge to reference
solution by refining
mesh and/or increasing
finite element order

• Method of
manufactured solutions

• Cannot be modeled
exactly with
polynomials

ψ (x , y , µ, η) = a + bµ + cη + d cos (4πx) sin (3πy)

a = 10, b = 1, c = 5, d = 1
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Test Problem 3: Convergence Study

• 3rd order mesh
DGFEM solution
(typical)

• 0th-, 1st-, 2nd-,
and 3rd-order
mesh edges

• Varying number
of mesh cells
and finite
element order
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Test Problem 3: Convergence Study
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Test Problem 3: Convergence Study

• Minimum achievable error on the order of 10−9 due to a precision
limitation currently under investigation

• Convergence rates determined from the slopes of the error plots
• Data points judged to be smaller than this maximum achievable accuracy

were omitted from this calculation

mesh edge order

0 1 2 3

el
em

en
to

rd
er 1 1.340 1.279 1.355 1.353

2 1.770 1.692 1.763 1.765

4 2.818 2.709 2.817 2.812

6 3.836 3.462 3.759 3.688

8 - 4.067 4.745 4.465

Table of convergence rates
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Diffusion Limit

• Arises in radiation transport problems

• Transport equation is useful for cells of few mean free paths thick
• Diffusion limit problems are highly scattering

• Mesh cells are many mean free paths thick

• Diffusion equation cannot model large changes in materials, strong
absorbers, or voids

• Computational limitation on refining mesh

• Transport equation is accurate but converges slowly
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Scaled Transport Equation

• Steady-state diffusion equation with scaling factor

−∇ ε

3σ
· ∇φ + εσaφ = εS0

• Scaled physics parameters

σ→
1
ε
σ σa → εσa S0 → εS0

• The equivalently scaled transport equation becomes

Ω · ∇ψ +
σ

ε
ψ =

1
4π

(
σ

ε
− εσa

)
φ +

1
4π
εS0

• As ε → 0, the transport equation solution converges to the diffusion
equation solution
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Scaled Transport Equation

• Highly scattering problems converge slowly

• Modified convergence criteria protects against false convergence

‖φ(l+1) − φ(l)‖∞ < εconv (1 − ρ) ‖φl+1‖∞

• Spectral radius is a measure of the convergence rate

ρ ≈
‖φ(l+1) − φ(l)‖∞

‖φ(l) − φ(l−1)‖∞
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Test Problem 4: 1-D Diffusion Problem

• This problem is defined by

σ =
1
ε
, σa = ε, S0 = ε, φ (0) = φ (1) = 0

• Analytical diffusion equation solution where L2 = D/σa,

φ (x) =
S0

σa

[(
e−1/L − 1

e1/L − e−1/L

)
ex/L −

(
e−1/L − 1

e1/L − e−1/L
+ 1

)
e−x/L + 1

]
• The steady-state transport equation for this problem becomes

Ω · ∇ψ +
1
ε
ψ =

1
4π

(1
ε
− ε

)
φ +

1
4π
ε
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Test Problem 4: 1-D Diffusion Problem

• DGFEM solutions;
ε = 0.1 (red),
ε = 0.05 (blue),
ε = 0.01 (green),
and analytical
diffusion equation
solution (black).

LLNL-PRES-XXXXXX



25/1

Test Problem 4: 1-D Diffusion Problem

ε
scattering ratio

c = 1 − ε2 spectral radius L2 error

0.1 0.9900 0.96 0.066

0.05 0.9975 0.99 0.034

0.01 0.9999 0.9996 0.0069

• 1-D problem modeled on 2-D periodic mesh

• S8 level-symmetric quadrature, 8th order finite elements, 0th order
orthogonal mesh edges

• As ε → 0, the transport solution trends toward the exact diffusion
solution

• This does not confirm achievement of the diffusion limit
• Need to solve for ε → 10−6

• Requires source iteration acceleration
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Test Problem 5: 2-D Diffusion Problem

• This problem is defined on x , y ∈ (0, 1)

σ =
1
ε
, σa = ε, S0 = ε, φ (0) = φ (1) = 0

• Reference solution from FEM diffusion equation solve on the same
mesh with the same order of finite elements

• The steady-state transport equation for this problem becomes

Ω · ∇ψ +
1
ε
ψ =

1
4π

(1
ε
− ε

)
φ +

1
4π
ε
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Test Problem 5: 2-D Diffusion Problem

• DGFEM solution to
2-D diffusion
problem for
ε = 0.01.

• S8 level-symmetric
quadrature

• 8th order finite
elements

• 8th order curved
mesh edges
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Test Problem 5: 2-D Diffusion Problem

ε
scattering ratio

c = 1 − ε2 spectral radius L2 norm

0.1 0.99 0.94 0.684

0.05 0.9975 0.98 0.346

0.01 0.9999 0.999 0.0663

• 20,736 unknowns, 256 zones

• As ε → 0, the transport solution trends toward the diffusion solution
• This does not confirm achievement of the diffusion limit

• Need to solve for ε → 10−6

• Requires source iteration acceleration
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Test Problem 6: Optically Thick Boundary Layer

y

x
0

0
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1000 mfp

Vacuum boundary

Vacuum boundary

Va
cu

um
bo
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da

ry

Va
cu

um
bo
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da

ry

• Homogeneous, optically thick
(c = 0.999)

• Gray cells indicate boundaries with
incident flux, rest are vacuum

• Designed to illuminate boundary
layers on the interior solution and
exercise the code

• No matrix lumping implemented
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Test Problem 6: Optically Thick Boundary Layer

• scalar flux; white space indicates negative

flux

• log of scalar flux; white space indicates

negative flux
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Test Problem 6: Optically Thick Boundary Layer

• Oscillations near zero result in negative fluxes

• Negative fluxes between incident flux locations

• Oscillations expected to be damped using lumped methods2 3

• Polynomials smoothly model exponential function over 22 orders of
magnitude

• S4 level-symmetric quadrature

• 8th order finite elements

2Marvin L. Adams. Discontinuous finite-element transport solutions in the thick
diffusion limit in Cartesian geometry. The American Nuclear Society International
Topical Meeting, 1991

3Todd S. Palmer. Curvilinear Geometry Transport Discretization in Thick Diffusive
Regions. PhD thesis, University of Michigan, 1993
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Test Problem 7: Optically Thick Multi-region

Material Region σ cm−1 σs cm−1

Source 1.0 1.0

Very thin absorber 0.0001 0.0

Thick absorber 10.0 0.0

Very thick absorber 100.0 0.0

Very thick scatterer 1000.0 1000.0

• Incident flux and source on
the left drive the problem

• Vacuum on remaining
sides

• Designed to test optical
thicknesses ranging
several orders of
magnitude simultaneously
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Test Problem 7: Optically Thick Multi-region

Material Region σ cm−1 σs cm−1

Source 1.0 1.0

Very thin absorber 0.0001 0.0

Thick absorber 10.0 0.0

Very thick absorber 100.0 0.0

Very thick scatterer 1000.0 1000.0

• Also designed to force
anisotropic fluxes incident
into the scattering region

• Test the boundary
condition of the interior
solution
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Test Problem 7: Optically Thick Multi-region

• scalar flux; white space indicates negative

flux

• log of scalar flux; white space indicates

negative flux
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Test Problem 7: Optically Thick Multi-region

• Oscillations near zero result in negative fluxes

• Oscillations expected to be damped using lumped methods4

• Polynomials smoothly model exponential function over 14 orders of
magnitude

• No issues with the negative flux due to anisotropic incident flux
• Perhaps the source is too strong

• S4 level-symmetric quadrature

• 8th order finite elements

• No lumping technique implemented

4Todd S. Palmer. Curvilinear Geometry Transport Discretization in Thick Diffusive
Regions. PhD thesis, University of Michigan, 1993
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Solution Methods

• Two methods to solve for scalar flux:
1. Source iteration
2. Directly solving for angular flux in all directions

• Expand scalar flux in terms of weights and angular fluxes

Ω · ∇ψm + σψm =
1

4π
σs (∆1ψ1 + · · ·+ ∆mψm + · · ·+ ∆MψM ) +

1
4π

S0

• Large matrix to solve for all angular fluxes simultaneously[
(feOrder + 1)2

× numCells × (numAngles)2
]

• Sum weighted angular fluxes

φ =
M∑

m=1

∆mψm
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Test Problem 8: Direct Solve

2-D diffusion problem solved with
direct solve method.

• ε = 0.01; c = 0.9999

• S4 angular quadrature

• 4th order finite elements, 2nd
order mesh

• 1600 unknowns in 64 zones

• 1920 by 1920 matrix

• This may be the practical limit of
unknowns

• Begins to fail for ε < 0.001; matrix
is ill-conditioned
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Conclusions

• Developed a transport solver
• Using MFEM
• High order finite elements
• Meshes with curved edges
• X-Y geometry

• Characterized on various test problems
• Uniform infinite medium problem with analytical solution was modeled

well, indicating preliminary success in the implementation of the finite
element method, angular quadrature, incident boundary conditions, and
source iteration method

• Reed-Hill problem exposed the need for reflecting boundary conditions
• Convergence study smoothly modeled a sine/cosine function; revealed

error reduction by increasing the number of unknowns; illuminated a
precision limitation within MFEM
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Conclusions

• Characterized on various test problems (continued)
• 1- and 2-D diffusion limit problems were modeled smoothly trending

toward the diffusion solution; demonstrates the need for source iteration
acceleration

• Boundary layer problem exponential solution was smoothly modeled with
polynomials; transport solution has nonphysical negative fluxes; lumping
may help at the cost of accuracy

• Multi-region problem was smoothly modeled; negative fluxes in optically
thick regions; lumping may fix negative fluxes at the cost of accuracy and
potentially introducing errors in optically thin regions

• Direct solve method solves the 2-D diffusion limit problem much faster
than the source iteration; size of the problem is very limited; large operator
matrix is ill-conditioned
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Future Work

• Implement synthetic acceleration

• Reflecting mesh boundaries

• More rigorous MMS convergence study

• Investigate MFEM precision limitation

• Perform asymptotic analysis

• Investigate usage of various lumping techniques

• Correct the direct solve method
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Questions?

Thank you...
Dr. Todd Palmer, OSU
Dr. Tom Brunner, LLNL
Dr. Teresa Bailey, LLNL

BLAST Team, LLNL
MFEM Team, LLNL
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1-D Adams Problem Solution
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Convergence Study - 0th order mesh

finite element order

1 2 4 6 8

nu
m

be
ro

fm
es

h
ce

lls

16 3.4800 0.61775 0.024481 3.5636E-4 2.6695E-6

64 0.70630 0.13003 6.3048E-4 1.7471E-6 5.0385E-9

256 0.11068 0.012167 1.2076E-5 8.6389E-9 4.0750E-9

1024 0.017186 8.6984E-4 2.0242E-7 4.0752E-9 4.0750E-9

4096 2.4856E-3 5.7499E-5 5.2170E-9 - -

16,384 3.3718E-4 3.7238E-6 - - -

Table: L2 norm for given order of finite elements and mesh cells for 0th-order
orthogonal edges.
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Convergence Study - 1st order mesh

finite element order

1 2 4 6 8

nu
m

be
ro

fm
es

h
ce

lls

16 4.3779 0.97822 0.049514 1.1404E-3 1.5779E-5

64 1.0636 0.19437 2.1084E-3 1.3649E-5 5.6172E-8

256 0.18427 0.021919 5.0502E-5 7.7349E-8 4.0757E-9

1024 0.02944 1.8227E-3 9.3964E-7 4.0887E-9 4.0750E-9

4096 4.4956E-3 1.3200E-4 1.6471E-8 - -

16,384 6.8033E-4 9.4817E-6 - - -

Table: L2 norm for given order of finite elements and mesh cells with 1st order
curvilinear edges.
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Convergence Study - 2nd order mesh

finite element order

1 2 4 6 8

nu
m

be
ro

fm
es

h
ce

lls

16 8.1134 1.9689 0.12230 4.2791E-3 1.1468E-4

64 1.4893 0.22841 3.0402E-3 2.6284E-5 1.5944E-7

256 0.21937 0.024236 6.5709E-5 1.2746E-7 4.0793E-9

1024 0.032682 1.9632E-3 1.1772E-6 4.1112E-9 -

4096 4.8375E-3 1.4116E-4 2.0566E-8 - -

16,384 7.2294E-4 1.0184E-5 - - -

Table: L2 norm for given order of finite elements and mesh cells with
2nd-order curvilinear edges.
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Convergence Study - 3rd order mesh

finite element order

1 2 4 6 8

nu
m

be
ro

fm
es

h
ce

lls

16 8.1099 2.0451 0.15364 7.2457E-3 2.6153E-4

64 1.4891 0.24304 4.1710E-3 5.3909E-5 5.3647E-7

256 0.22057 0.025530 8.9648E-5 2.6227E-7 4.1221E-9

1024 0.033012 2.0550E-3 1.5906E-6 4.2185E-9 -

4096 4.8894E-3 1.4711E-4 2.6972E-8 - -

16,384 7.2936E-4 1.0551E-5 - - -

Table: L2 norm for given order of finite elements and mesh cells with 3rd-order
curvlinear edges.

LLNL-PRES-XXXXXX



47/1

1-D Adams Problem Solution
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2-D Adams Problem Solution ε = 0.1
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2-D Adams Problem Solution ε = 0.05
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Test Problem 8: Direct Solve

ε scattering ratio L2 norm

0.1 0.99 0.04654713

0.05 0.9975 0.023714251

0.01 0.9999 0.0048038978

0.005 0.999975 0.0024034884

0.001 0.999999 0.00048896782

0.0005 0.99999975 0.00027587357

0.0001 0.99999999 0.040468175
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